CONJUGACIES CLASSES OF SOME NUMERICAL METHODS
نویسندگان
چکیده
منابع مشابه
Some numerical results on two classes of finite groups
In this paper, we consider the finitely presented groups $G_{m}$ and $K(s,l)$ as follows;$$G_{m}=langle a,b| a^m=b^m=1,~[a,b]^a=[a,b],~[a,b]^b=[a,b]rangle $$$$K(s,l)=langle a,b|ab^s=b^la,~ba^s=a^lbrangle;$$and find the $n^{th}$-commutativity degree for each of them. Also we study the concept of $n$-abelianity on these groups, where $m,n,s$ and $l$ are positive integers, $m,ngeq 2$ and $g.c.d(s,...
متن کاملSome Numerical Results on Two Classes of Finite Groups
In this paper, we consider the finitely presented groups Gm and K(s, l) as follows; Gm = 〈a, b|a = b = 1, [a, b] = [a, b], [a, b] = [a, b]〉 K(s, l) = 〈a, b|ab = ba, ba = ab〉; and find the n-commutativity degree for each of them. Also we study the concept of n-abelianity on these groups, where m,n, s and l are positive integers, m,n ≥ 2 and g.c.d(s, l) = 1.
متن کاملsome numerical results on two classes of finite groups
in this paper, we consider the finitely presented groups $g_{m}$ and $k(s,l)$ as follows;$$g_{m}=langle a,b| a^m=b^m=1,~[a,b]^a=[a,b],~[a,b]^b=[a,b]rangle $$$$k(s,l)=langle a,b|ab^s=b^la,~ba^s=a^lbrangle;$$and find the $n^{th}$-commutativity degree for each of them. also we study the concept of $n$-abelianity on these groups, where $m,n,s$ and $l$ are positive integers, $m,ngeq 2$ and $g.c.d(s,...
متن کاملA Successive Numerical Scheme for Some Classes of Volterra-Fredholm Integral Equations
In this paper, a reliable iterative approach, for solving a wide range of linear and nonlinear Volterra-Fredholm integral equations is established. First the approach considers a discretized form of the integral terms where considering some conditions on the kernel of the integral equation it is proved that solution of the discretized form converges to the exact solution of the problem. Then th...
متن کاملPERRON-FROBENIUS THEORY ON THE NUMERICAL RANGE FOR SOME CLASSES OF REAL MATRICES
We give further results for Perron-Frobenius theory on the numericalrange of real matrices and some other results generalized from nonnegative matricesto real matrices. We indicate two techniques for establishing the main theorem ofPerron and Frobenius on the numerical range. In the rst method, we use acorresponding version of Wielandt's lemma. The second technique involves graphtheory.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proyecciones (Antofagasta)
سال: 2001
ISSN: 0716-0917
DOI: 10.4067/s0716-09172001000100001